TWO MAIN PROBLEMS OF CALCULUS

3.1 Derivative of a Function

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 is called the derivative of f at \mathcal{A} .

We write:
$$f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

"The derivative of f with respect to x is ..."

DIFFERENTIATION FROM FIRST PRINCIPLES

Consider a general function y = f(x) where A is the point (x, f(x)) and B is the point (x + h, f(x + h)).

The chord [AB] has gradient =
$$\frac{f(x+h) - f(x)}{x+h-x}$$
$$= \frac{f(x+h) - f(x)}{h}$$

If we let B approach A, then the gradient of [AB] approaches the gradient of the tangent at A.

So, the gradient of the tangent at the variable point (x, f(x)) is the limiting value of $\frac{f(x+h)-f(x)}{h}$ as h approaches 0, or $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$.

This formula gives the gradient of the tangent to the curve y = f(x) at the point (x, f(x)), for any value of the variable x for which this limit exists. Since there is at most one value of the gradient for each value of x, the formula is actually a function.

The derivative function or simply derivative of y = f(x) is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

ALTERNATIVE NOTATION

If we are given a function f(x) then f'(x) represents the derivative function.

If we are given y in terms of x then y' or $\frac{dy}{dx}$ are commonly used to represent the derivative.

 $\frac{dy}{dx}$ reads "dee y by dee x" or "the derivative of y with respect to x".

 $\frac{dy}{dx}$ is **not a fraction**. However, the notation $\frac{dy}{dx}$ is a result of taking the limit of a fraction. If we replace h by δx and f(x+h)-f(x) by δy , then

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 becomes
$$f'(x) = \lim_{\delta x \to 0} \frac{\delta y}{\delta x}$$
$$= \frac{dy}{dx}.$$

THE DERIVATIVE WHEN x=a

The gradient of the tangent to y = f(x) at the point where x = a is denoted f'(a), where

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Differentiability or Derivability

A real function f is said to be derivable or differentiable at a point c in its domain, if its left hand and right hand derivatives at c exist (i.e., finite and unique) and are equal, i.e. Lf'(c) = Rf'(c). Here, at x = c left hand derivative,

LHD =
$$\lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} = Lf'(c)$$

and right hand derivative,

RHD =
$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = Rf'(c)$$
.

The common value of Lf'(c) and Rf'(c) is known as the derivative of f(x) at x = c and denoted by f'(c).

Also, a function is said to be differentiable in an interval (a, b), if it is differentiable at every point of (a, b).

A function is said to be differentiable in an interval [a,b], if it is differentiable at every point of [a,b] (same as continuity we take right hand derivative and left hand derivative at a and b, respectively).

Method to Show Differentiability of a Function

Suppose a function f(x) define in a domain is given to us and we have to check its differentiability at point x = c in its domain. Then, we use the following steps:

- I. Firstly, write the given function say f(x) and the point say x = c at which we have to check differentiability.
- II. Find left hand derivative (LHD) at x = c by using the formula, LHD = $\lim_{h \to 0} \frac{f(c-h) f(c)}{-h}$.
- III. Find right hand derivative (RHD) at x = c by using the formula

RHD =
$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

IV. If LHD = RHD at x = c, then f(x) is differentiable at x = c, otherwise f(x) is not differentiable at x = c.

Example 1. Is f(x) = |x-1| + |x-2| differentiable at x = 2?

Solution. We have : f(x) = |x - 1| + |x - 2|.

$$Lf'(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h}$$

$$= \frac{\left[\left| (2-h) - 1 \right| + \left| (2-h) - 2 \right| \right]}{-\left[\left| 2 - 1 \right| + \left| 2 - 2 \right| \right]}$$

$$= \frac{-\left[\left| 2 - 1 \right| + \left| 2 - 2 \right| \right]}{-h}$$

$$= \lim_{h \to 0} \frac{\left| 1 - h \right| + \left| - h \right| - 1 - 0}{-h}$$

$$= \lim_{h \to 0} \frac{1 - h + h - 1}{-h}$$

$$= \lim_{h \to 0} \frac{0}{-h} = \lim_{h \to 0} 0 = 0$$

and $R f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$

$$\lim_{h \to 0} \frac{\left[\left| (2+h) - 1 \right| + \left| (2+h) - 2 \right| \right]}{-\left[\left| 2 - 1 \right| + \left| 2 - 2 \right| \right]}$$

$$= \lim_{h \to 0} \frac{1+h+h-1-0}{h}$$

$$= \lim_{h \to 0} \frac{2h}{h} = \lim_{h \to 0} 2 = 2.$$

Thus $Lf'(2) \neq Rf'(2)$. $[\because 0 \neq 2]$

Hence, 'f' is not differentiable at x = 2.

Example 2. Find 'a' and 'b', if the function given by:
$$f(x) = \begin{cases} ax^2 + b, & \text{if } x < 1 \\ 2x + 1, & \text{if } x \ge 1 \end{cases}$$

is differentiable at x = 1.

Solution. Since 'f' is derivable at x = 1,

 \therefore 'f is continuous at x = 1

$$\Rightarrow \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1^{-}} (ax^2 + b) = \lim_{x \to 1^{+}} (2x + 1) = 2(1) + 1 = 3$$

$$\Rightarrow \lim_{h \to 0} (a(1-h)^2 + b) = \lim_{h \to 0} 2(1+h) + 1 = 3$$

$$\Rightarrow \qquad a+b=2+1=3$$

$$\Rightarrow a+b=3$$

$$\Rightarrow \qquad a+b=3 \qquad ...(1)$$

Again since 'f' is differentable at x = 1,

$$\therefore \qquad \text{L}f'(1) = \text{R}f'(1)$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1-h)-f(1)}{-h} = \lim_{h \to 0} \frac{f(1+h)-f(1)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{[a(1-h)^2 + b] - 3}{-h} = \lim_{h \to 0} \frac{[2(1+h) + 1] - 3}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{(a+b) - 2ah + ah^2 - 3}{-h} = \lim_{h \to 0} \frac{(2h+3) - 3}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{3 - ah(2 - h) - 3}{-h} = \lim_{h \to 0} \frac{2h}{h}$$
 [Using (1)]

$$\Rightarrow \lim_{h \to 0} \frac{-a(2-h)}{-1} = \lim_{h \to 0} \frac{2h}{h}$$

$$\Rightarrow \lim_{h \to 0} a(2-h) = \lim_{h \to 0} (2)$$

$$\Rightarrow \qquad 2a = 2 \Rightarrow a = 1.$$

Putting in (1), $1 + b = 3 \Rightarrow b = 3 - 1 \Rightarrow b = 2$.

Hence,
$$a = 1$$
 and $b = 2$.

1. Examine the differentiability of the function

$$f(x) = \begin{cases} x[x] & \text{if } 0 \le x < 2\\ (x - 1)x & \text{if } 2 \le x < 3 \end{cases}$$
NCERT Exemplar

Sol. Given,
$$f(x) = \begin{cases} x[x] & \text{, if } 0 \le x < 2 \\ (x-1)x & \text{, if } 2 \le x < 3 \end{cases}$$

and at point x = 2, we have to check differentiability.

At
$$x = 2$$
, LHD = $\lim_{h \to 0} \frac{f(2-h) - f(2)}{-h}$
= $\lim_{h \to 0} \frac{(2-h)[2-h] - 2[2]}{-h}$
= $\lim_{h \to 0} \frac{(2-h)(1) - 4}{-h}$ [:: $[2-h] = 1$ and $[2] = 2$]
= $\lim_{h \to 0} \frac{2-h-4}{-h} = \lim_{h \to 0} \left(\frac{-2-h}{-h}\right) = \lim_{h \to 0} \left(\frac{2+h}{h}\right)$
= not defined

Hence, f(x) is not differentiable at x = 2.

Definition of Derivative: $f'(x) = \frac{dy}{dx}$

- The Derivative is the exact rate at which one quantity changes with respect to another.
- Geometrically, the derivative is the slope of curve at the point on the curve.
- 3. The derivative is often called the "instantaneous" rate of change.
- The derivative of a function represents an infinitely small change the function with respect to one of its variables.

Algebra of Differentiation 1

Sum/Difference

$$\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$$

Product

$$\frac{d}{dx}(uv) = v \cdot \frac{du}{dx} + u \cdot \frac{dv}{dx}$$

Quotient

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

Standard Results 1

f(x)	f'(x)
χ^n	nx^{n-1}
e^x	e^x
a^x	$a^x \log_e a$
$\log_e x$	$\frac{1}{x}$
$\log_a x$	$\frac{1}{x \log_e a}$

Standard Results 2

f(x)	f'(x)
$\sin x$	cos x
cos x	$-\sin x$
tan x	$sec^2 x$
cot x	$-\csc^2 x$
sec x	sec x tan x
CSC X	$-\csc x \cot x$